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In this paper, we extended the analytical level set method [1,2] for identifying a piece-
wisely heterogeneous (zonation) binary system to the case with an arbitrary number of 
materials with unknown material properties. In the developed level set approach, starting 
from an initial guess, the material interfaces are propagated through iterations such that 
the residuals between the simulated and observed state variables (hydraulic head) is 
minimized. We derived an expression for the propagation velocity of the interface between 
any two materials, which is related to the permeability contrast between the materials on 
two sides of the interface, the sensitivity of the head to permeability, and the head residual. 
We also formulated an expression for updating the permeability of all materials, which is 
consistent with the steepest descent of the objective function. The developed approach 
has been demonstrated through many examples, ranging from totally synthetic cases to a 
case where the flow conditions are representative of a groundwater contaminant site at 
the Los Alamos National Laboratory. These examples indicate that the level set method 
can successfully identify zonation structures, even if the number of materials in the model 
domain is not exactly known in advance. Although the evolution of the material zonation 
depends on the initial guess field, inverse modeling runs starting with different initial 
guesses fields may converge to the similar final zonation structure. These examples also 
suggest that identifying interfaces of spatially distributed heterogeneities is more important 
than estimating their permeability values.

Published by Elsevier Inc.

1. Introduction

Various inverse models have been developed for identifying heterogeneous structures in subsurface environment [3–5]. 
It is well-known that the inverse problem is typically ill-posed because of limited data available. To avoid the ill-posed 
problem, one approach is the zonation method [6,7], in which the model domain is divided into a number of zones as a 
prior, each of which has a uniform parameter value. The zonation method is not only simple but also generally superior to 
some other methods in case of limited data available [8]. Most of those inverse models focus on identifying the parameter 
values and determination of the zonation structure is mostly neglected [9]. The main reason is that identifying the zonation 
structure of an aquifer is much more difficult than estimating the relevant parameter values associated with these zones. 
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Any inaccuracy of a priori assumptions on the number of zones and their shapes and locations about the zonation structure 
may lead to instability in estimating the piece-wise constant parameter field [9].

Recently, a few approaches have been proposed to identify both the zonation structure and the relevant parameter values. 
The key difference among these approaches is how to parameterize the zonation structure. There are three commonly-used 
methods to parameterize the structure: clustering analysis, Voronoi tessellation (VT), and the level set method (LSM).

Ayvaz [10] used a fuzzy c-means clustering method to determine the aquifer parameters and zone structures simultane-
ously. This method starts with one zone and systematically increases the parameter dimension until the best parameter 
structure is identified, which was determined from three criteria: residual error, parameter uncertainty and structure 
discrimination. Eppstein and Dougherty [11] developed an approach that estimates transmissivity values and zonation simul-
taneously for a steady-state flow problem using an iterative k-mean clustering algorithm. The algorithm works by iteratively 
applying the standard k-means clustering algorithm, where the centroids of clusters are calculated as the arithmetic mean 
of the transmissivity of the member zones. The number of clusters is increased each iteration until the predefined cluster 
tolerance is met within all clusters.

In the VT-base approaches, the optimization process determines an appropriate level of parameter structure complexity, 
and at each level of complexity the zonation is determined from a set of basis points using the Voronoi tessellation, and the 
parameters to be optimized include the locations (coordinates) of these basis points and conductivity values at these points 
[12,13]. In [12], Tsai et al. used sequential global-local optimization to minimize the squared error with a global search 
for the best parameter values and a local search for basis points. Tsai and Yeh [14] combined the Bayesian estimation and 
the generalized parameterization method, which is capable of creating a mixture of zonation structure and a continuous 
distribution of conductivity fields. In [15], Tung and Tan identified the number of zones and their hydraulic conductivity 
values by combining Voronoi tessellation and simulated annealing. Chiu [16] used Voronoi tessellation to represent the 
material zonation with different number of basis points, and the coordinates and the conductivity values associated with 
these points were optimized using differential evolution.

The concept of the level set method (LSM) was first introduced by Osher and Sethian [17] and has been proved to be 
a very powerful tool for solving problems that involve geometric evolution. This method was initially designed for tracking 
the motion of a front whose velocity depends on the local curvature. The method has been used in several fields, including 
shape optimization problems [18], image segmentation [19], and inverse problems [1,20,2,21]. One of the advantages of the 
level set method is that it is much easier to work with a globally defined function than to keep track of the boundaries of 
regions of interest, which may split into many regions or merge into larger ones. The level set method requires no a priori
assumptions on shape, size and locations of zones to be sought or correlation structures of these zones.

In the level set based approaches, the zonation is characterized by one or more level set functions (LSFs). These ap-
proaches may be classified into two large groups based on how the LSFs are defined. In the first group, the interface evolves 
explicitly from solving the Hamilton–Jacobi equation (i.e., level set equation) [1,2,22]. The expression for the propagation 
velocity of the evolving interface is determined from minimizing the objective function, which is related to the discrepancy 
between the simulated and observed state variables, such as hydraulic head. In the second group, instead of propagating 
interfaces directly by specifying interface velocity, they evolve implicitly through updating LSFs using a fixed order of poly-
nomial [23], or some basis functions [24–28], or B-splines [29], or LSFs at some selected grid nodes and LSFs at the rest of 
grid nodes are calculated from interpolation [20,28].

In this study, we extend the analytical approach in [1,2] for binary fields to parameter zonation identification of any 
arbitrary number of material zones, through mathematically rigorous derivation. In this approach, the propagation velocity 
of each interface between any two materials is derived from the minimization of an objective function, which measures the 
differences between the simulated and observed hydraulic heads. A similar expression for the propagation velocity has been 
given by Cardiff and Kitanidis [22], but it was not clear how the expression was derived. In addition, as an extension of 
Lu and Robinson [2], in which the permeability values of two materials are fixed, the permeability values of these material 
zones are also to be estimated. This method can be used to identify, for example, low-permeability layers in a relatively 
higher permeability porous media (or vice versa), or highly permeable fault zones in the subsurface.

The rest of paper is organized as follows. Section 2 gives the statement of the inverse problem. Section 3 describes 
the level set representation of materials zones. In Section 4, we derive analytical expressions for updating (1) material 
zonation through the propagation velocity of material interfaces and (2) permeability values for all materials. The numerical 
methods and some implementation issues are discussed in Section 5. Section 6 presents several examples to demonstrate 
the application of the level set method to identify lower permeable zones in both synthetic and real-world flow problems. 
Conclusions and discussions are presented in Section 7.

2. Problem statement

We consider transient groundwater flow in confined saturated media satisfying the standard governing equation

∇ · [Ks(x)∇h(x, t)] + g(x, t) = Ss
∂h(x, t)

, x ∈ � (1)

∂t
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subject to appropriate initial and boundary conditions [30]. Here h(x, t) is the hydraulic head, Ks(x) is the saturated hy-
draulic conductivity, Ss is the specific storage, and � is the flow domain. For simplicity, Ss is taken to be constant, because 
its variability is typically small compared to that of the hydraulic conductivity.

We assume that the saturated hydraulic conductivity field consists of several zones, each of which has a uniform con-
ductivity value. In other words, the conductivity field is a piece-wise constant variable. In the forward modeling, given any 
conductivity field, one can solve for the hydraulic head from (1), subject to appropriate initial and boundary conditions. 
In the inverse modeling, however, one tries to estimate the conductivity field using the hydraulic head observed at some 
selected times and locations.

Now suppose hydraulic heads are observed at nh locations x1, x2, · · · , xnh , and at nt times t1, t2, · · · , tnt , arranged in a 
vector h(o) = (h(o)

i ), i = 1,nh × nt . The aim of the inverse analysis is to find the spatial distribution of materials in the domain 
as well as their conductivity or permeability values. To demonstrate the method, the case of error-free head measurements 
is examined, though it would be straightforward to include measurement errors in future work.

3. Level set representation of material zonation

For completeness, we briefly introduce the basic idea of the level set method using the case of two materials and 
then extend the description to the case of multiple materials. Consider an n-dimensional domain � for two materials. An 
(n − 1)-dimensional subspace � ∈ � partitions the domain into a subdomain �1 and this complement �2 = �\�1, and we 
define a level set function (LSF) φ as

φ(x) < 0, for x ∈ �1,

φ(x) > 0, for x ∈ �2,

φ(x) = 0, for x ∈ �.

(2)

Note that each subdomain may include a number of disjoint regions. Also note that the LSF and its associated partition are 
not a one-to-one correspondence. A level set function φ uniquely defines a partition, but the same partition can be defined 
by an infinite number of level set functions. For instance, multiplying φ by a non-zero constant will not change the location 
of the interface and the partition. In numerical implementation, this feature allows us to re-initiate φ(x) periodically without 
affecting interface �. This is typically done in the iteration process by resetting the value of φ(x) to the signed distance 
from x to the current interface.

The unit outward vector normal to � can be written as

n(x) = ∇φ

|∇φ| , (3)

where |∇φ| is the norm of ∇φ, |∇φ|2 = ∇φ · ∇φ. This normal direction at x ∈ � is perpendicular to the tangent plane (or 
line in two-dimensional cases) to � at point x. By this definition, the normal vector n(x) points to the region where φ > 0.

The function φ defined in (2) can only partition the domain � into disjoint regions with two materials. If there are 
M(> 2) materials in the domain, since it requires �log2(M)� + 1 bits to represent decimal number M in the binary sys-
tem [31], we need �log2(M)� + 1 LSFs to characterize the partition of M materials; above �·� is the floor function mapping 
a real number r to the largest integer not greater than r. This number could be reduced to m = ⌈

log2(M)
⌉

, (�·� is the 
ceiling function mapping a real number r to the smallest integer not less than r), if we use the binary expression of (i − 1)

to represent material index i.
Let P be a partition of domain � into M materials: � = ∪M

i=1�i , where �i ∩ � j = ∅ for i �= j, and ∅ stands for a set 
of zero measure in the space considered. By definition, any k-dimensional subspace of Rn has measure zero if k < n. For 
instance, for a two-dimensional domain �, ∅ could be a set of points or curves.

The intersection between any two sub-domains �i and � j can be empty or some lower dimension interfaces, such as a 
curve in the two-dimensional domain or a surface in the three-dimensional domain. Under this partition, the conductivity 
field can be represented as [20,25,28]

K (x) =
M∑

i=1

Ki�i(φ1, · · · , φm), (4)

where Ki , i = 1, M is the conductivity of the ith material, φ j , j = 1,m are LSFs, and indicator functions �i are defined as

�i(φ1, · · · , φm) =
m∏

j=1

Ri(φ j), Ri(φ j) =
{

H(φ j(x)), if bij = 1
1 − H(φ j(x)), if bij = 0,

(5)

where H(x) is the Heaviside function with H(x) = 1 for x > 0 and H(x) = 0 for x ≤ 0. The derivative of the Heaviside 
function is the Dirac delta function H ′(x) = δ(x). Here bij is the jth position (from the left to the right, out of the total 
m positions) in the binary expansion of decimal number (i − 1)10 = (bi1bi2 · · ·bim)2, where subscript ‘2’ or ‘10’ represents 
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Fig. 1. Schematic diagram illustrating the evolution of the level set function (or equivalently the domain partition defined by the level set function), starting 
from the initial guess φ0, evolving during the iteration process, and finally approaching to the true partition.

the number in the binary or decimal system. The term bij has a very clear physical meaning: bij = 0 implying that φ j is 
negative in material �i or positive otherwise. One obvious advantage of using (i − 1) rather than i is that it uses one bit 
less (or equivalently one less level set function) when M is a power of 2. Note that this definition of R j

i is slightly different 
from that in [28], for the purpose of keeping consistency with the zone definition in [2].

The inverse problem described above is to find LSFs φ j(x), j = 1,m, such that the hydraulic head field solved using 
the zone partition � = ∪M

i=1�i characterized by these functions matches the head measurements at various observation 
locations (e.g., wells) and times. Note that no assumption has been made on the connectedness of �i , i.e., �i could be a 
disjoint set, or connected but including a number of holes. In addition, there is no assumption made regarding the number 
of regions, their sizes and locations, correlation structure, or the proportion of these materials. From (4) and (5) it is easy 
to see that the dependence of the hydraulic head defined in (1) on the material zonation characterized by these level set 
functions is highly nonlinear, which makes the inverse problem very challenging.

Because the shape, size, and location of set �i are unknown, the level set functions φ j(x) are also unknown. In the level 
set approach, we generate a sequence of partitions �(τ) = ∪M

i=1�i(τ ) characterized by a sequence of LSFs φ j(x, τ ), j = 1,m, 
such that �i(τ ) → �i , where τ represents the index for iteration, as illustrated in Fig. 1 for the case of two materials 
defined by one LSF. In this iterative process, the number of zones and their shapes, sizes, and locations are sequentially 
improved. The hydraulic conductivity of these materials can also be updated in this iterative process. The success of this 
method hinges on finding a strategy for efficiently propagating the boundary of �i(τ ) such that it approaches to the true 
unknown �i . This is described in the following sections.

4. Formulation of the inverse problem

The inverse problem described above can be written as a problem of minimizing an objective function:

F (K ) = 1

2
‖h(K ) − ho‖2, (6)

where ho is a vector of nh × nt observed heads, K is the hydraulic conductivity or permeability, and h represents an 
operator that maps the K field to the hydraulic head through solving the flow equation (with appropriate boundary and 
initial conditions) and then sampling head at measurement locations and times. The vector h(K ), denoted as hm , can be 
considered as the modeled head at measurement locations and times.

Objective function F (K ) is a mapping from the space of function K (x) to a real number. The functional derivative (also 
known as the Fréchet derivative), δF (K )/δK (x), quantifies how much the value of F (K ) changes if one changes K (x) by 
a small amount at x. In mathematics, the Fréchet derivative is a derivative defined on Banach spaces. It is usually used 
to generalize the derivative of a real-valued function of a single real variable to the case of a vector-valued function of 
multiple real variables [32]. The Fréchet derivative has applications to nonlinear problems throughout mathematical analysis 
and physical sciences, particularly to the calculus of variations and much of nonlinear analysis and nonlinear functional 
analysis. The functional derivative can be defined through the following relation [32,33]

δF (K ) =
∫
�

δF (K )

δK (x)
δK (x)dx, (7)

which implies that the total change of F (K ) upon the variation of the function K (x) is a linear superposition of the local 
changes summed over the entire domain �. The local change can be derived from the derivative of (6) with respect to K (x):
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δF (K )

δK (x)
= JT (K (x)) [hm − ho] , (8)

where J(K (x)) is the Jacobian of the head at observation locations/times to conductivity K at location x. Here, J is a vector of 
size nh ×nt , whose components are J i = dhi/dK (x), i = 1,nh × nt . In the numerical solution, where the domain is discretized 
into N grid nodes (or elements), J is a matrix of nh × nt rows and N columns.

Substituting (8) into (7) yields

δF (K ) =
∫
�

JT (K ) [hm − ho] δK (x)dx, (9)

where the integrand is a scalar. The variation δK can be derived from (4). Such variations might be due to the variation 
of conductivity of each material and/or the variation of interfaces among these materials. As the result, (9) can be written 
as two integrals, one accounting for the variation of the material interfaces and the other for the variation of conductivity 
values. Both of these two factors can be considered in the inverse model, for instance, by alternatively updating conductivity 
values and interface locations. For simplicity in derivation and discussion, we consider these two factors separately.

4.1. Variation of material interfaces

For a special case of two materials with unknown interfaces, following [1], Lu and Robinson [2] reduce the integral 
over the domain � in (9) to an integral over the interface of material zones by graphically relating δK to the propagation of 
interfaces. For a general case with an arbitrary number of materials, it is not obvious to extend the above approach. Without 
mathematical derivations, Cardiff and Kitanidis [22] gave an expression of δF as an integral over all interfaces defined by 
{x : φi(x) = 0; i = 1,m}, while the integrand is proportional to the contrast of the conductivity field on the two sides of the 
interface. Here we propose a theoretically rigorous way to deal with the general case of an arbitrary number of material 
zones.

Taking the variation of (4) and noting dH(x)/dx = δ(x) gives

δK (x) =
m∑

j=1

δ(φ j)δφ j

M∑
i=1

(−1)bij+1 Ki

m∏
k=1
k �= j

Ri(φk(x)), (10)

where δ(φ j) is the Dirac delta function with δ(φ j) = 1 for φ j > 0 and δ(φ j) = 0 otherwise, while δφ j stands for the variation 
of φ j . Substituting (10) into (9) and utilizing a property of the delta function:

∫
�

f (x)δ(φ(x))dx =
∫

{x:φ(x)=0}

f (x)

|∇φ|dx, (11)

where f (x) is any function, we have

δF (K ) =
m∑

j=1

∫
{x:φ j(x)=0}

β(K )
δφ j

|∇φ j|
M∑

i=1

(−1)bij+1 Ki

m∏
k=1
k �= j

Ri(φk(x))dx, (12)

where β(K ) = JT (K ) [hm − ho] is a scalar. Similar to the case of two materials, the integration now is over all surfaces 
defined by {x : φ j(x) = 0}, j = 1,m. As seen later, these surfaces may overlap each other. From (4) and (5), we also note that 
each of these surfaces may include a number of interfaces that separate different materials and can be written as, for any 
j = 1,m,

{x : φ j(x) = 0} =
⎛
⎝ ⋃

p: bpj=0

�p

⎞
⎠⋂⎛

⎝ ⋃
q: bqj=1

�q

⎞
⎠ =

⋃
bpj=0,bqj=1

�
( j)
pq , (13)

where �( j)
pq denotes the interface between �p and �q characterized by the jth LSF with φ j(x) < 0 for x ∈ �p and φ j(x) > 0

for x ∈ �q . Any physical interface between �p and �q , denoted as �pq = �p ∩�q , if it exists, may include one or more �
( j)
pq . 

Fig. 2 illustrates an example for M = 4 materials characterized by m = 2 level set functions. This example includes all 
possible interfaces for the case of 4 materials. As seen from the figure, while most of interfaces such as �12 and �13 are 
uniquely defined by one LSF, some of interfaces, such as �14 and �23, are defined by more than one LSF. In the latter case, 
one needs to distinguish the LSF associated with the interfaces, such as �(1)

14 and �(2)
14 . In the former case, for the sake of 

clarity, we also specify the LSF by which the interface is defined (i.e., �(2) or �(1)). As a result, surfaces {x : φ j(x) = 0} could 
12 13
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Fig. 2. Schematic representation of possible interface locations for the case of 4 materials characterized by two LSFs. Note that some of the material 
interfaces are defined by more than one LSF (such as �14 and �23). The table in the right lower corner shows the matrix B = (bij)4×2 for the case with 
up to four materials. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

be overlapping each other for different j. For instance, from Fig. 2 it is seen (dashed blue segments for φ1 and solid red 
segments for φ2):

{x : φ1(x) = 0} = �
(1)
13 ∪ �

(1)
23 ∪ �

(1)
14 ∪ �

(1)
24 ,

{x : φ2(x) = 0} = �
(2)
12 ∪ �

(2)
32 ∪ �

(2)
14 ∪ �

(2)
34 .

(14)

Here {x : φ1(x) = 0} and {x : φ2(x) = 0} share the same interfaces �14 and �23. Equations (13) and (14) indicate that the 
summation in (12) may be written equivalently as a summation over all interfaces:

δF (K ) =
M∑

p,q=1
p �=q

∫
�pq

m∑
j:bpj=0
&bqj=1

β(K )
δφ j

|∇φ j|
M∑

i=1

(−1)bij+1 Ki

m∏
k=1
k �= j

Ri(φk(x))dx. (15)

To further simplify (15), we need to determine δφ j/|∇φ j | on each interface �
( j)
pq . Taking the variation of equation 

φ j(x) = 0 on interface �( j)
pq gives

δφ j(x) + ∇φ j(x) · δx = 0, x ∈ �
( j)
pq . (16)

We restrict the displacement, δx, along the normal direction on the interface �pq

δx = αpq(x)n( j)
pq (x), (17)

where n( j)
pq (x) is the unit outward normal vector, defined as n( j)

pq (x) = ∇φ j(x)/|∇φ j |, as seen in (3). Here αpq(x) can be 
considered as the propagation velocity of the physical interface �pq , which should be independent of j. For example, 
notationally we have �(1)

14 and �(2)
14 for the case of 4 materials described above, but they represent the same physical 

interface and should propagate at the same velocity. Combining (16) and (17) yields

δφ j(x)

|∇φ j(x)| = −αpq(x), x ∈ �pq. (18)

Substituting this expression into (15) yields

δF (K ) = −
M∑

p,q=1
p �=q

∫
�pq

αpq(x)β(K )

m∑
j:bpj=0
&bqj=1

M∑
i=1

(−1)bij+1 Ki

m∏
k=1
k �= j

Ri(φk(x))dx, (19)

where the first summation is over all possible interfaces, while the second summation includes all level set functions 
characterizing each individual interface (such as �(1)

14 and �(2)
14 in the previous example). For any interface that was defined 

by a single level set function, the second summation reduces to a single term.
To ensure that F (K ) is always decreasing in the iteration process, we choose αpq as:

αpq(x) = β(K )

m∑
j:bpj=0
&b =1

M∑
i=1

(−1)bij+1 Ki

m∏
k=1
k �= j

Ri(φk(x)), (20)
qj
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Fig. 3. 3-bit binary cube for finding the Hamming distances. The numbers in parentheses are material indexes, and 3-digit numbers can be viewed either 
as the row vectors in binary matrix B (see Table 1) or strings in the Hamming space.

and (19) reduces to

δF (p) = −
∑
p,q

∫
�pq

[αpq(x)]2dx, (21)

which is always non-positive. We can also choose αpq to be the right side of (20) scaled by any positive number. This will 
also keep F (K ) decreasing. It is noted that the propagation rate αpq(x) depends on the location x on �pq , in part through 
J(K ), which is the sensitivity of head at all measurement locations/times to conductivity on x ∈ �pq .

The expression for αpq in (20) can be simplified further by introducing the concept of the Hamming space and Hamming 
distance. Let H = {0, 1}, and the m-dimensional Hamming Space Hm consists of 2m strings of length m. Each point x ∈ Hm

is a string x = (x1x2 · · · xm) of zeros and ones. For any two points x, y ∈Hm , their Hamming distance dH(x, y) is the number 
of positions at which the corresponding strings differ, i.e., dH(x, y) = |{i : xi �= yi}|, where | · | stands for the cardinality (size) 
of the set. This distance represents the minimum number of substitutions required to change one string to the other. For 
an m-dimensional Hamming space, the number of string pairs that have a distance d will be Nd

m = 2m−1Cd
m , where Cd

m , 
also written as 

(m
d

)
, is the combination of choosing d objects from m objects without repetition, and the number of all 

possible physical interfaces is 
∑m

d=1 2m−1Cd
m = 2m−1(2m − 1). An example of the Hamming space for m = 3 is shown in 

Fig. 3. In this diagram, there are 2m = 8 vertexes and each vertex represents one material (labeled in parentheses). The 
Hamming distance between any pair of vertexes is the number of edges in a shortest path connecting the pair. For instance, 
dH (000, 100) = 1 (green path) and dH (000, 011) = 2 (blue path or red path). The numbers of pairs with distance 1, 2, and 
3, for this case are N1

3 = 12, N2
3 = 12, and N3

3 = 4, respectively, and there are 22(23 − 1) = 28 possible physical interfaces. 
This diagram shows not only the possible interfaces between different materials, but also the LSFs that characterize these 
interfaces. For example, the interface between materials 1 (string 000) and 5 (string 100), �15, is described by the level set 
function φ1 because two strings differ at position 1, and the interface between materials 1 (string 000) and 4 (string 011) 
is characterized by both φ2 and φ3 because two strings differ at positions 2 and 3.

Now we are ready to simplify αpq in (20). We first consider a simple case of �pq in which the Hamming distance 
between (p − 1)10 = (bp1bp2 · · ·bpm)2 and (q − 1)10 = (bq1bq2 · · ·bqm)2 is one. Assume without loss of generality that these 
two binary numbers differ at the nth position, i.e., bpn = 0, bqn = 1, and bpj = bqj for j �= n. From (20), the expression for 
αpq may be written as

αpq(x) = α
(n)
pq (x) = β(K )

M∑
i=1

(−1)bin+1 Ki

m∏
k=1
k �=n

Ri(φk(x)). (22)

Now, let’s start with first column of the binary matrix B = (bij)M×m (refer to Table 1) that satisfies bpk = bqk . If bpk = bqk = 0, 
the level set function φk < 0 on �pq , and H(φk) = 0. By the definition of Ri(φk), any material i that has a ‘1’ on the kth 
position (i.e., bik = 1) in the binary representation of (i − 1) will disappear from the above summation. On the other hand, if 
bpk = bqk = 1, the level set function φk > 0 on �pq , and H(φk) = 1, and any material i that has a ‘0’ on the kth position (i.e., 
bik = 0) in the binary representation of (i − 1) will disappear from the above summation. In other words, if bpk = bqk , then 
any material i with bik �= bpk will vanish from the summation in (22). This process will cross-out 2m−1 terms from (22). 
Repeat this process m − 1 times for all m − 1 columns that satisfy bpj = bqj (recalling that bpn �= bqn). Since each column 
in the binary matrix B of 2m rows contains 2m−1 ones and 2m−1 zeros, the first cross-out will delete 2m−1 terms, and the 
second time will delete only half of this amount (i.e., 2m−2), because the other half have been deleted in the first round, and 
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Table 1
Binary representation of material zonation up to eight materials.

Material i Binary i − 1 Ri(φ1) Ri(φ2) Ri(φ3)

1 0 0 0 1 − H(φ1) 1 − H(φ2) 1 − H(φ3)

2 0 0 1 1 − H(φ1) 1 − H(φ2) H(φ3)

3 0 1 0 1 − H(φ1) H(φ2) 1 − H(φ3)

4 0 1 1 1 − H(φ1) H(φ2) H(φ3)

5 1 0 0 H(φ1) 1 − H(φ2) 1 − H(φ3)

6 1 0 1 H(φ1) 1 − H(φ2) H(φ3)

7 1 1 0 H(φ1) H(φ2) 1 − H(φ3)

8 1 1 1 H(φ1) H(φ2) H(φ3)

so on. Therefore, the total number of materials crossed out from this procedure will be 2m−1 + 2m−2 + · · ·+ 2, which equals 
2m − 2. In other words, the right side of (22) reduces to αpq(x) = β(K ) 

(
Kq − K p

)
when the Hamming distance between 

vertexes p and q (or equivalently the binary strings of p − 1 and q − 1) is one.
If the Hamming distance between the binary expressions of p − 1 and q − 1, denoted as d, is greater than one, we 

may decompose the path from vertex p to vertex q into d steps, each of which involves two vertexes that has a Hamming 
distance of one. In this case, we may write αpq = α

( j1)

pi1
+α

( j2)

i1 i2
+· · ·+α

( jd)

id−1q
, where each pair of indexes in the subscript have 

a Hamming distance of one, and their binary representations differ at one position specified in the superscript. From the 
previous discussion on the case of Hamming distance of one, it is easy to see αpq(x) = β(K ) 

(
Ki1 − K p

)+β(K ) 
(

Ki2 − Ki1

)+
· · · + β(K ) 

(
Kq − Kid−1

) = β(K )(Kq − K p). For instance, on interface �14, using the blue path in Fig. 3, the propagation 
velocity α14(x) = α

(2)
14 + α

(3)
14 can be re-written as

α14(x) = α
(3)
12 (x) + α

(2)
24 (x)

= β(K ) (K2 − K1) + β(K ) (K4 − K2) = β(K ) (K4 − K1) . (23)

The same result can be obtained by using the red path in the figure, α14 = α
(2)
13 + α

(3)
34 = β(K ) (K4 − K1). Finally, we can 

write the propagation of any interface �pq as

αpq(x) = β(K )
(

Kq − K p
)
. (24)

This expression suggests that the propagation velocity at any point x on an interface is proportional to the permeability 
contrast between the materials on both sides of the interface. In particular, for a binary conductivity field, the corresponding 
propagation velocity is

α12(x) = β(K ) (K2 − K1) , (25)

which is the same as the one given in Lu and Robinson [2], except for a proportional constant.
The final step is to derive equations for the evolution of φ j , j = 1,m. Substituting the variation of x in (17) into (16) and 

recalling the definition of n( j)
pq = ∇φ j/|∇φ j |, we have

δφ j(x) + α j(x)|∇φ j(x)| = 0, (26)

where α j(x) is the assembled αpq(x) for φ j(x), as αpq is only defined on interface �pq . The propagation velocity α j(x)

varies for different LSFs because they involve different interfaces �pq . If the function φ j(x) is expressed as a function of 
both x and an artificial time τ , φ j = φ j(x, τ ), the evolution of φ j(x, τ ) accordingly defines the evolution of the partition 
� = ∪M

i=1�i(τ ) over time τ :

∂φ j(x, τ )

∂τ
+ α j(x, τ )|∇φ j(x, τ )| = 0, (27)

with an initial condition φ j(x, 0) = φ0
j (x). This equation is called Hamilton–Jacobi equation (or the level set equation). For 

sufficiently large τ , {x : φ j(x, τ ) = 0}, j = 1,m, define the spatial distribution of M materials, which is the final solution to 
the inverse problem.

4.2. Variation of conductivity values

The variation δK due to the variation of each individual conductivity Ki alone can be derived from (4) as

δK (x) =
M∑

�i(φ1, · · · , φm)δKi . (28)

i=1
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Substituting this into (9) and using the property of �i yields:

δF (K ) =
M∑

i=1

∫
�i

JT (K ) [hm − ho] δKidx. (29)

This expression is valid for both piece-wise conductivity fields and continuous conductivity fields that vary within each 
individual material. If we consider the piece-wise conductivity field only, i.e., Ki is a constant in �i , the above equation 
reduces to

δF (K ) =
M∑

i=1

δKi

∫
�i

JT (K ) [hm − ho] dx. (30)

In the iterative inverse process, if we update the current Ki by δKi determined from the following expression:

δKi = −
∫
�i

JT (K ) [hm − ho] dx, (31)

the variation of the objective function becomes

δF (K ) = −
M∑

i=1

(δKi)
2, (32)

which is always non-positive. It should be noted that, although permeability in each subdomain �i is uniform, the sensitivity 
JT (K ) is not uniform in each subdomain, because this sensitivity depends not only the permeability field but also the flow 
conditions (initial and boundary conditions, as well as sources/sinks).

Equation (31) represents the integral of all residuals between the simulated and observed heads, weighted by the head 
sensitivity at observation locations and times to the conductivity in �i . Suppose that dhl/dKi , the sensitivity of head at 
observation location k and time j, where l = (k − 1) ∗ nt + j, is positive. If at one moment (iteration) the modeled head h(m)

l

is greater than the observed head h(o)

l , then the contribution −dhl/dKi (h(m)

l − h(o)

l ) to δKi will be negative, which tends to 
reduce Ki and thus h(m)

l in the next iteration. On the other hand, if h(m)

l < h(o)

l , the effect of this observation to δKi will be 
positive, which then tends to increase Ki in the next iteration and thus increases h(m)

l .

5. Numerical implementation

In this section, we discuss the numerical implementation and some technical issues in the implementation.

5.1. Sensitivity calculation

A prerequisite for this gradient-based level set method is the sensitivity of state variables (e.g., steady-state or transient 
hydraulic head) to the permeability field. One efficient way to calculate the sensitivity is the adjoint method [34–36]. In 
general, for each observation location, this involves solving the adjoint equation and then integrating the production of the 
gradient of the solution (called the adjoint variable) and that of the mean head field, over the model domain for a correlated 
permeability field or over the mesh element that contains observation location for the case of an uncorrelated field [36]. 
Details can be found in Lu and Vesselinov [36]. The adjoint equation has the same format as the original flow equation but 
is subject to homogeneous boundary conditions and a terminal condition instead of the initial condition in the original flow 
equation. The effect of sources/sinks and boundary conditions on the sensitivity is taken into account through the gradient 
of the mean head field in the integrand. Typically the adjoint equation has to be solved numerically and integration is also 
calculated numerically. However, analytical expressions for the head sensitivity to permeability can be derived for regular 
flow domains and boundary conditions as in this study [36].

5.2. Solving for level set functions

The second important component of this level set method is solving the Hamilton–Jacobi equation or the level set 
equation, (27), which is an initial value problem for each LSF. All LSFs are defined in the entire model domain and their 
values at any point in the domain are initialized using the initial guess material distribution by assigning its signed distance 
to some material interfaces, as described below. Unlike the binary system in which the material distribution is characterized 
by a single LSF and the function value has different signs on both sides of material interfaces (see Equ. (2)), for a porous 
medium with more than two materials, an LSF does not always change the sign across an interface. For instance, in Fig. 2, 
φ1(x) is negative in both �1 and �2, and so it does not change the sign across the interface between these two materials. 
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We utilize matrix B = (bij)M×m and the initial guess field to initialize all LSFs. For each LSF φ j and each node n in the 
numerical grid, if the material type at this node is k, we will check bkj . If bkj = 0, we need to find the minimum distance 
between node n and all nodes satisfying b∗ j = 1, where wildcard ∗ stands for any number. Otherwise (i.e., bkj = 1), we 
need to find the minimum distance between this node n and all nodes satisfying b∗ j = 0. In the former case, we assign the 
negative value of the minimum distance to φ j(n), and in the latter case, we assign the minimum distance to φ j(n). Let’s 
take a case with four material as an example (Fig. 2). The matrix B for this case is listed in the right lower corner of the 
figure. For LSF φ1 (column labeled ‘j = 1’), if the material type at a node n is 1 or 2 (b11 = 0 and b21 = 0), we find the 
minimum distance from this node to all nodes with material type 3 or 4. The logic is that the set {x : φ1(x) = 0} separates 
�1 ∪ �2 and �3 ∪ �4, and the sign of φ1 at node n is determined by bkj being 0 or 1. The initial LSF φ2 can be derived 
similarly.

Once all LSFs are initialized, iteratively updating these functions is straightforward. The steady-state or transient flow 
equation is solved using the current permeability field (or initial guess field for the first iteration), and the residual between 
the simulated and observed heads at measurement times and locations is calculated. The iterative process stops if the 
residual is smaller than a prescribed stopping criterion or the maximum number of iterations has reached. Otherwise, the 
head differences, together with the head sensitivity, are used to calculate the propagation velocity αpq(x) on interface �pq

(if it exists), using (24). From (27), the LSF φ j can be updated explicitly through

φ j(x, τ + �τ) = φ j(x, τ ) − α j(x, τ )|∇φ j(x, τ )|�τ, (33)

where ∇φ j(x, τ ) is the gradient of the current φ j , and �τ is determined from the propagation velocity in such a way that 
the maximum displacement at any location of all interfaces is less than the minimum size of elements in the grid. These 
new LSFs are then applied to update the new permeability zonation K (x) through (4) and (5), which is used in the next 
iteration.

In updating LSFs using (33), they may become irregular after some period of time [37]. One way to alleviate this problem 
is by periodically re-initializing the LSFs to the signed distance function using the current material zonation, as described 
above. The rationale behind this re-initialization process is that any zonation determined from the LSFs depends on the 
signs of LSFs rather than their absolute values, and therefore such a re-initialization will not change the zonation but makes 
the LSFs well behaved.

5.3. Updating permeability values

The permeability value for each material is updated using (31). Recalling that JT (Ki) [hm − ho] is in fact the gradient of 
the objective function F (K ), (31) implies that the update to each conductivity Ki will be in the down-gradient direction, and 
the vector δK will be in the steepest descent of objective function F (K ). In practice, we may fix the permeability value for 
the background material while leave the permeability values for those embedded (unobserved) materials to be estimated. 
Our experience is that we may simply update the material zonation first and use some guess permeability values in early 
iterations, and start to update permeability values when the material zonation is more-or-less stabilized. This is because the 
variable permeability values for embedded materials do not significantly affect the reduction of the objective function.

6. Illustrative examples

In this section, we will demonstrate zonation identification using the level set method through many examples, ranging 
from totally synthetic cases to a case where the flow conditions are taken from a real site.

6.1. Updating both zonation structure and permeability

In the first example (Case 1), two lower permeable zones (log permeability values of log K1 = −12 and log K2 = −14) 
are embedded in the background porous medium with a log permeability value of log K3 = −9. The simulation domain and 
the locations of the embedded zones are the same as the example in [2], except that the two embedded lower permeability 
zones have different permeability values instead of the same value.

The two-dimensional square domain of size 100 m × 100 m is uniformly discretized into elements of 1 m × 1 m. The 
boundary conditions are given as: prescribed constant heads at the left (10.5 m) and right (10.0 m) boundaries, and no-flow 
on two lateral boundaries. The steady-state flow equation subject to the above boundary conditions is solved with the true 
permeability field (Fig. 4a), using the finite-element heat- and mass-transfer code (FEHM) [38], which is developed at Los 
Alamos National Laboratory. The code uses the control volume finite element method, and is capable of simulating coupled 
multiple phase flow and solute transport in geologically complex subsurface environment. The simulated hydraulic head at 
36 locations, indicated as green dots in the figure, are taken as the measurements.

The goal is then to identify the spatial distribution of three materials and their permeability values using the head 
measurements. Since we do not have sufficient information about the shapes of these embedded lower permeable zones, we 
simply start with two discs to represent the initial shapes of these zones (Fig. 4b). It is assumed that the permeability of the 
background material is known and fixed at log K3 = −9, while the spatial distribution of the lower permeability materials 
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Fig. 4. Comparison of (a) the true permeability field, (b) initial guess, and (c) the best results in terms of the minimum residual from 700 iterations, for 
Case 1, which has three materials.

Fig. 5. The permeability values for three materials and the root mean squared error (RMSE) as functions of the iteration number, Case 1.

and their permeability are unknown. The initial log permeability values of these lower-permeability materials are assigned 
as log K1 = −13 and log K2 = −15, which deviate from their true values by one order of magnitude. We solve steady-state 
flow equation with the initial guess permeability field, then update the material zonation by calculating the propagation 
velocity of any interface �pq using (24), updating the level set functions φi , indicator functions �i , and the permeability 
zonation K (x) using (27), (5), and (4), respectively. In the first 200 iterations, we only update the spatial distribution of 
the materials, and the permeability values are fixed at the initial guess values. After 200 iterations, the permeability values 
of materials are updated every 5 iterations using (31). This process continues until the maximum number of iterations is 
reached or the root mean squared error (RMSE) is smaller than the prescribed value. The true permeability field, the initial 
guess, and the best inversion results are compared in Fig. 4, where the best inversion field is selected based on the smallest 
RMSE out of all 700 iterations. It is seen from the figure that the inversion results are quite similar to the true field, except 
that the lower permeable zones from the inversion results have smooth corners rather than the sharp corners as in the true 
field. The reason is that the head measurements are not sensitive to the shape of the corners, unless measurement locations 
are very close to these corners. As seen later in Section 6.3, the estimated material zonation will be greatly improved by 
adding more measurements.

This gradient-based approach ensures that the RMSE will be reduced over the iteration process. Fig. 5 shows the RMSE 
(blue curve) as a function of the iteration number up to 700 iterations. In general, the RMSE reduces with iterations, great 
reduction of the RMSE is observed at early iterations, and the RMSE is stabilized after about 200 iterations. Fig. 5 also 
depicts the evolution of log permeability of lower permeability materials over iterations, which is allowed to be adjusted 
after 200 iterations. The figure indicates that the permeabilities of the lower permeable materials varies over iteration and 
become close to the true values.

For the purpose of comparison, we also ran a similar inverse model where the only difference from the previous model 
is that the permeability for all materials are fixed at the true values. The reduction of RMSE for this run is also depicted in 
Fig. 5 (the black curve). Several important remarks can be made from this comparison. First, the RMSEs from two inverse 
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Fig. 6. Comparison of (a) the true permeability field, (b) initial guess, and (c) the best inversion results in terms of the smallest RMSE in 700 iterations, for 
Case 2.

Fig. 7. The permeability values and the root mean squared error (RMSE) as functions of the iteration number, Case 2.

models are very close. In particular, at the early iterations, the RMSEs are overlapping, which means that the RMSE is not 
sensitive to the initial guess of the lower permeable zones. Second, at about 150 iterations, the RMSE from the run with 
true permeability values is smaller than that from the run with guess permeability values, which indicates that the effect 
of permeability values appears when the spatial distribution of the materials are close to the true one. Furthermore, it is 
important to note that, the permeabilities of two lower permeable materials have been adjusted significantly but the change 
of the RMSE is very small, which may suggest that in inverse modeling, it is more important to identify the shapes and 
locations of heterogeneities rather than their permeability values.

In the second example (Case 2), the problem configurations are similar to that in Case 1, except that there are four 
materials (see labels in Fig. 6) with log permeability values of −13, −14, −12 and −9, respectively, where the background 
material has the highest log permeability. The true distribution of materials is shown in Fig. 6a. We start the simulation with 
an initial guess of three discs (Fig. 6b), which is quite different from the true field, and run up to 700 iterations. We fix the 
permeability of two higher permeable materials at log K3 = −12 and log K4 = −9, while assign the initial guesses log K1 =
−14 and log K2 = −15, and allow them to be adjustable after 200 iterations. In this example, again we are interested in 
the spatial distribution of lower permeability materials embedded in the background material and the permeability of two 
lower permeable materials. The best permeability field out of 700 iterations is compared against the true field and the 
initial guess in Fig. 6c. The comparison shows that the inversion results characterize the ‘true‘ zonation very well.

The RMSE and two lower permeabilities as functions of iterations for this case are illustrated in Fig. 7. An additional 
inverse model run with fixed permeability at their true values is conducted and the RMSE is also compared in the figure. 
Again, it appears that the RMSE is not sensitive to the initial guess of two lower permeability values. Because the reduction 
of RMSE for the case with fixed true permeability represents the evolution of the material distribution, two almost identical 
RMSEs suggest that the spatial distribution of the materials is much more important than the permeability values in fitting 
the observed hydraulic heads.
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Fig. 8. Evolution of lower permeable inclusions for Case 3, where the true field has one lower permeable material (a), but the guess field has three lower 
permeable materials because of lacking accurate information about the number of materials. Plots (b)–(f) illustrate some snapshots of the evolution, plot 
(g) is the best fit out of 600 iterations, and plot (h) shows the RMSE.

6.2. Unknown number of materials

In the next two examples (Cases 3 and 4), we want to test the behavior of the algorithm when the number of materials 
is unknown. In both cases, the problem configurations and the locations of head measurements are the same as in Case 1. 
In Case 3, there are two materials: a lower permeable material of log K1 = −12 embedded in the background material of 
log K4 = −9 (Fig. 8a). Suppose that we do not know exactly the number of materials in the domain and guess that there 
may exist two additional materials with known permeability values log K2 = −13 and log K3 = −14. We start the guess 
material distribution as shown in Fig. 8b, where materials 2 and 3 do not exist in the true field and the location of material 
1 is far away from its true location. As expected, the size of both materials 2 and 3 decreases (Fig. 8c) in the iterative process 
and they disappear at about 70 and 202 iterations, respectively (Fig. 8d, e). Only after disappearance of these no-existing 
materials does material 1 start to move upward and get close the true location (Fig. 8e, f). The best location and shape 
of material 1 is selected based on the smallest RMSE out of 600 iterations and is depicted in Fig. 8g, which is almost 
identical to the true one. The RMSE for this case is illustrated in Fig. 8h. It is seen from Fig. 8h that there exist two fast 
reduction segments in the RMSE curve (iterations 1–50, and 200–300). The first fast reduction corresponds to the shrinkage 
of material 2, and the second one to adjustment of the location for material 1. The RMSE is almost monotonically decreases 
in these two segments. After 300 iterations, the RMSE starts to oscillate, corresponding to adjusting the shape of material 1.

In Case 4, we consider a different scenario where there are three materials in the true permeability field: two lower 
permeable materials of log K1 = −12 and log K2 = −14 embedded in the background material with log K3 = −9, but we 
pretend that there is only one lower permeable material with log K1 = −12. The evolution of the material zonation is 
illustrated in Fig. 9, where plot (a) represents the true field, and plot (b) is our initial guess field, which is a large disc located 
at the center of the model domain because we do not have prior information about the true zonation. It is interesting to note 
that in early iterations the lower permeable zone starts to stretch along the direction in which two true lower permeable 
materials align, and it then breaks into two pieces at about iteration 80 (Fig. 9c). These two pieces then gradually move to 
the locations of the true lower permeable zones, although their sizes are small at this stage, comparing to the true ones 
(Fig. 9d). It is noted that the lower permeable zones will not grow when they are not at the right locations, because their 
growing at wrong locations will most likely increase the head residual. As soon as they reach the true locations, they start 
to grow (Fig. 9d, e, f). The best fit based on the smallest RMSE out of 800 iterations is shown in Fig. 9g, which is almost 
identical to the true field, except that now the permeability values for two lower permeable zones are the same because 
we assume that there is only one lower permeable material in the domain. The RMSE for all 800 iterations is depicted in 
Fig. 9h. This example also confirms our conclusion from Case 2 that the spatial distribution of the lower permeable materials 
is more important than their permeability values in fitting the observed heads. These two examples indicate that this level 
set algorithm is capable of identifying material zonation without accurate prior knowledge about the number of materials 
in the model domain.



270 Z. Lu et al. / Journal of Computational Physics 364 (2018) 257–273
Fig. 9. Evolution of lower permeable inclusions for Case 4, where the true field has two lower permeable materials (a), but the guess field has one lower 
permeable material because of lacking accurate information about the number of materials. Plots (b)–(f) illustrate some snapshots of the evolution, plot (g) 
is the best fit out of 800 iterations, and plot (h) shows the RMSE.

6.3. Sensitivity of estimated zonation structure to initial guess field

In this subsection, we want to investigate the sensitivity of the estimated zonation on the initial guess field. The problem 
configurations, including the flow domain, boundary conditions and the true material zonation, are the same as those in 
Case 1, except that the number of measurements is increased to 361 (a 19 × 19 array). The reason for using the denser 
measurements is first to demonstrate that the discrepancy between the true and estimated zonation as shown in Figs. 4
and 6 is mainly due to lack of information, not to numerical problems.

The evolution of material zonation for five cases (named as Cases A–E) with different initial guess fields is depicted in 
Fig. 10, where the top row is for initial guesses, the middle row for snapshots at iteration 80, and the bottom row for the 
best result out of 600 iterations for each case.

Case A starts with the same initial guess field as that in Case 1. However, the best material zonation for Case A 
(Fig. 10-A3) is very close to the true one and has been significantly improved over the estimated zonation in Case 1, 
simply because of more head measurements included.

In Case B, two lower permeable materials are connected in the initial guess, but the algorithm is able to evolve each 
material such that the best estimated zonation is quite similar to the true one. The locations and the shapes of two lower 
permeable materials are the same in Cases C and D, but the different materials have been assigned. It is noted that, while 
the locations and the shapes of two lower permeable materials are correctly identified, in Case D, two materials have 
been switched. This is because, as discussed before, the locations and the shapes of lower permeable materials are more 
important than their actual permeability values. The flow field as indicated by head contour lines and streamlines for Case D 
(Fig. 10-D3) is very close to the true flow field, even though the permeability values for these lower permeable zones have 
been switched. In Case E, the locations of the initial lower permeable materials are the same as in Case A, but their sizes are 
much smaller. As the iterative process starts, material 2 quickly shrinks and disappears, and material 1 starts to grow and 
eventually becomes closer to the true material 1. The disappearance of the material 2 is mainly due to the combination of 
the small size and its larger permeability contrast with the background material. A fast reduction of the objective function 
may be easily achieved by simply eliminating the higher contrast materials rather than moving them. Even if material 2 
in the guess field is placed at the true location, it may still disappear if its size is small, because locally the flow field 
in the earlier iterations may be significantly different from the true flow field. The lower permeable zone with a smaller 
permeability contrast will likely to survive, because its existence has a smaller impact on the flow field. This example implies 
that the size matters. It is our experience that, whenever possible, one should always start with large material zones in the 
guess field.

It is seen from this set of cases that qualitatively this level set method is not very sensitive to the initial guess field, and 
model runs starting with different initial guess fields may result to similar zonation structures, as long as the sizes of the 
material zones in the initial guess field are big enough. The algorithm is quite robust in identifying the material zonation.
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Fig. 10. Sensitivity of inverse results on the initial guess field. The true zonation is the same as that in Case 1. Top row shows 5 initial guesses, the middle 
row for their corresponding snapshots at iteration 80, and the bottom row for the best results.

Fig. 11. Comparison of (a) the true, (b) initial guess, and (c) the best results in terms of the minimum residual from 100 iterations, which has three 
materials. The contours and streamlines represent the flow field at 200 days.

6.4. Application to LANL site

In the last example (Case 5), we consider a more realistic transient groundwater flow problem based on the Chromium 
contamination site in the regional aquifer at the Los Alamos National Laboratory [39,40]. Because the flow in the aquifer is 
nearly horizontal, we treat the groundwater flow as two-dimensional with a rectangular domain of Lx = 5,000 m and L y =
4,000 m. The boundary conditions are given as: constant head at the western and the eastern boundaries as 1,001 m and 
1,000 m, respectively, and no-flow on two lateral boundaries. Overall, the flow is along the x direction, under a hydraulic 
gradient of 0.0002. There are 14 site observation wells that are applied in this study (the well locations are shown in 
Fig. 11 as black dots). There are 22 transient drawdown data at each observation well, in response to pumping at wells 
R-28 and R-42 (red dots in Fig. 11) with variable pumping rates: 20 kg/s from t = 0∼200 days at R-28, and 20 kg/s during 
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t = 400∼600 days at R-42 (the synthetic pumping tests are designed to be consistent with actual field activities conducted 
at the site). The contours of hydraulic head and the streamlines in the figure represent the flow field at 200 days. It should 
be noted that both observation wells and pumping wells are concentrated in a small area of the domain, which makes it 
difficulty to infer the permeability field in the regions that are far away from the wells. While the flow domain and well 
placement are taken from the real site, the ‘true’ spatial distribution of the lower permeable zones are assumed for the 
purpose of testing the level set method.

Fig. 11a depicts the ‘true’ hydraulic conductivity field (in m/s) with two lower permeable zones log K1 = −3.3 and 
log K2 = −4.9 embedded in a background medium of log K3 = −1.5. The initial guess field and the best estimation (lowest 
RMSE) among 600 iterations are shown in Fig. 11b–c. Again, it is seen that the best estimation is quite similar to the ‘true’ 
field.

7. Conclusions and discussions

In this study, through mathematically rigorous derivations, we extended the level set method for identifying zonation in a 
binary system [1,2] to an arbitrary number of materials with unknown permeability (permeability is assumed to be uniform 
within each material), and obtained an expression for the propagation velocity of material interfaces and an expression for 
updating permeability for all materials. In each iteration, the propagation velocity at points on any material interface is 
proportional to the permeability contrast between materials on the two sides of the interface, the sensitivity of the head 
to permeability, and the residual between the simulated and the observed head. The update to permeability value of each 
material depends on the residual between the observed and the simulated hydraulic heads, weighted by the sensitivity of 
the head to permeability, integrated over each material zone. This update is consistent with the steepest descent direction 
of the objective function. The approach has been tested using a few examples that involve three or four materials with 
steady-state or transient head measurements in synthetic or real-world groundwater flow systems. The inversion results are 
quite reasonable. The approach is also capable of identifying the material zonation when the number of materials is not 
known exactly. Through these examples, it is demonstrated that, in inverse modeling, it is more important to identify the 
locations and the shapes of heterogeneities than their permeability values.

The proposed approach ensures that theoretically the residual is always decreasing during the iterative process, which is 
also a drawback of the approach, because the solution could be a local minimum. The evolution of the material zonation, 
solved from the initial value problem of the LSFs, is of course dependent on the initial LSFs or equivalently on the initial 
guess field. Numerical investigation on the sensitivity of the inversion results to the initial guess field indicates that the 
results are not very sensitive to the initial guess. In other words, model runs starting with different initial guess fields 
may evolve to the similar final zonation structures. Our experience is that the sizes of the material zones in the initial field 
should not be too small, or otherwise they may quickly disappear, especially for those materials that have large permeability 
contrasts with the background material. The effect of the initial field can be further reduced by, for example, using some 
prior information (such as well log data or outcrops) to condition the zonation structure at the measurement locations of 
the permeability field. The conditioning may be achieved by selecting the initial guess to satisfy the direct measurements 
and then enforcing the zero propagation velocity around these condition points during the iterative process. One may also 
initiate a set of inverse model runs, each of which starts with random locations of the initial guess and random initial 
permeability, and the best solution (smallest RMSE) among these inverse runs may be considered as the solution to the 
inverse problem.

Although in theory the method may work for any arbitrary number of materials, in practice, it may not work for an 
extremely large number of materials because this method relies on the permeability contrast to drive the interface prop-
agation. The performance of this method will deteriorate if permeability contrasts are small. However, if the permeability 
values of two or more stratigraphic units are close, it is typical in hydrologic inverse modeling to combine them into one 
material in the model.
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